89 research outputs found

    Profibrinolytic effect of the epigenetic modifier valproic acid in man.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.The aim of the study was to test if pharmacological intervention by valproic acid (VPA) treatment can modulate the fibrinolytic system in man, by means of increased acute release capacity of tissue plasminogen activator (t-PA) as well as an altered t-PA/Plasminogen activator inhibitor -1 (PAI-1) balance. Recent data from in vitro research demonstrate that the fibrinolytic system is epigenetically regulated mainly by histone deacetylase (HDAC) inhibitors. HDAC inhibitors, including VPA markedly upregulate t-PA gene expression in vitro.The trial had a cross-over design where healthy men (n = 10), were treated with VPA (Ergenyl Retard) 500 mg depot tablets twice daily for 2 weeks. Capacity for stimulated t-PA release was assessed in the perfused-forearm model using intra-brachial Substance P infusion and venous occlusion plethysmography. Each subject was investigated twice, untreated and after VPA treatment, with 5 weeks wash-out in-between. VPA treatment resulted in considerably decreased levels of circulating PAI-1 antigen from 22.2 (4.6) to 10.8 (2.1) ng/ml (p<0.05). It slightly decreased the levels of circulating venous t-PA antigen (p<0.05), and the t-PA:PAI-1 antigen ratio increased (p<0.01). Substance P infusion resulted in an increase in forearm blood flow (FBF) on both occasions (p<0.0001 for both). The acute t-PA release in response to Substance P was not affected by VPA (p = ns).Valproic acid treatment lowers plasma PAI-1 antigen levels and changes the fibrinolytic balance measured as t-PA/PAI-1 ratio in a profibrinolytic direction. This may in part explain the reduction in incidence of myocardial infarctions by VPA treatment observed in recent pharmacoepidemiological studies.The EU Clinical Trials Register 2009-011723-31.Swedish Heart-Lung Foundation Swedish Research Council Emelle Foundatio

    Platelets Retain High Levels of Active Plasminogen Activator Inhibitor 1

    Get PDF
    The vascular fibrinolytic system is crucial for spontaneous lysis of blood clots. Plasminogen activator inhibitor 1 (PAI-1), the principal inhibitor of the key fibrinolytic enzyme tissue-type plasminogen activator (tPA), is present in platelets at high concentrations. However, the majority of PAI-1 stored in platelets has been considered to be inactive. Our recent finding (Brogren H, et al. Blood 2004) that PAI-1 de novo synthesized in platelets remained active for over 24 h, suggested that PAI-1 stored in the α-granules might be active to a larger extent than previously reported. To re-evaluate this issue, we performed experiments where the fraction of active PAI-1 was estimated by analyzing the tPA-PAI-1 complex formation. In these experiments platelets were lysed with Triton X-100 in the presence of serial dilutions of tPA and subsequently the tPA-PAI-1 complex was evaluated by Western blot. Also, using a non-immunologic assay, tPA was labeled with 125I, and 125I-tPA and 125I-tPA-PAI-1 was quantified by scintigraphy. Interestingly, both methods demonstrated that the majority (>50%) of platelet PAI-1 is active. Further analyses suggested that pre-analytical procedures used in previous studies (sonication or freezing/thawing) may have substantially reduced the activity of platelet PAI-1, which has lead to an underestimation of the proportion of active PAI-1. Our in vitro results are more compatible with the role of PAI-1 in clot stabilization as demonstrated in physiological and pathophysiological studies

    Extracellular nucleotides ATP and UTP induce a marked acute release of tissue-type plasminogen activator in vivo in man

    No full text
    Extracellular nucleotides such as ATP and UTP are released by activation of platelets and ischemic tissue injury. The aim of the present study was to investigate whether ATP and UTP can induce acute tPA release from the vascular endothelium in vivo. Nine healthy subjects were studied in a perfused-forearm model during stepwise intraarterial infusions of ATP and UTP (10-200 nmol/min), and UTP during inhibition of prostanoid and NO synthesis by indomethacin and L-NMMA. ATP and UTP induced a similar and marked stimulation of forearm tPA release which increased 11- and 18-fold above baseline (p < or =0.01 for both) in conjunction with pronounced vasodilation. Neither the acute tPA release nor the vasodilation could be abrogated by NO and prostanoid synthesis inhibition. The similar effect of ATP and UTP suggests that P2Y rather than adenosine receptors mediate the response. Release of extracellular nucleotides in ischemic tissue may induce a pronounced activation of the endogenous fibrinolytic system
    corecore